

	TEST REPORT					
Test Report No::	TCT230508E002					
Date of issue::	May 25, 2023					
Testing laboratory::	Shenzhen TCT Testing Technology Co., Ltd.					
Testing location/ address:	2101 & 2201, Zhenchang Factory, Renshan Industrial Zon Fuhai Subdistrict, Bao'an District, Shenzhen, Guangdong,					
Applicant's name:	LINKCOM MANUFACTURING CO., LTD					
Address::	Building 1, No.21 Huanqi Avenue, Qishi Town Dongguan Guangdong Sheng China					
Manufacturer's name:	LINKCOM MANUFACTURING CO., LTD					
Address::	Building 1, No.21 Huanqi Avenue, Qishi Town Dongguan Guangdong Sheng China					
Standard(s):	ETSI EN 301 489-1 V2.2.3 (2019-11) ETSI EN 301 489-3 V2.3.2 (2023-01)					
Product Name::	wireless charging pad					
Trade Mark::	N/A	(0)				
Model/Type reference:	OPP130, OPP002					
Rating(s)::	DC 5V(Adapter input AC 230 V/ 50 Hz)					
Date of receipt of test item :	May 08, 2023					
Date (s) of performance of test:	May 08, 2023 - May 25, 2023					
Tested by (+signature):	Rleo LIU					
Check by (+signature):	Beryl ZHAO Roy(2 TCT)					
Approved by (+signature):	Tomsin					

General disclaimer:

This report shall not be reproduced except in full, without the written approval of Shenzhen TCT Testing Technology Co., Ltd. This document may be altered or revised by Shenzhen TCT Testing Technology Co., Ltd. personnel only, and shall be noted in the revision section of the document. The test results in the report only apply to the tested sample.

TABLE OF CONTENTS

1. General Product Information	
1.1. EUT description	3
1.2. Model(s) list	3
2. Test Result Summary	4
3. General Information	5
3.1. Test environment and mode	
3.2. Description of Support Units	5
3.3. Test Instruments List	6
4. Facilities and Accreditations	7
4.1. Facilities	7
4.2. Location	7
4.3. Measurement Uncertainty	
5. Emission Test	8
5.1. Conducted Emission	8
5.2. Radiated Emission 5.3. Harmonic Current Emissions	11
5.3. Harmonic Current Emissions	16
5.4. Flicker and Voltage Fluctuation	16
6. Immunity Test 6.1. Performance Criteria	17
6.1. Performance Criteria	17
6.2. Surges	18
6.3. Electrical Fast Transient (EFT)	18
6.4. Radio-frequency Continuous Conducted (CS)	18
6.5. Voltage Dips and Voltage Interruption	
6.6. Electrostatic Discharge	18
6.7. Radio-frequency Electromagnetic Field Amplitude Modulated (R	S)22
7. Photographs of Test Configuration	24
8. Photographs of EUT	26

1. General Product Information

Report No.: TCT230508E002

1.1. EUT description

Product Name:	wireless charging pad		
Model/Type reference:	OPP130		
Operation Frequency:	115.38kHz – 150.64kHz		
Test Frequency:	137.60kHz		
Modulation Technology:	Load modulation		
Operational Mode:	Mode 4: energy transmission	(C)	
Antenna Type:	Inductive loop coil Antenna		
Rating(s):	DC 5V(Adapter input AC 230 V/ 5	0 Hz)	

1.2. Model(s) list

No.	Model No.	Tested with
1	OPP130	
Other models	OPP002	

Note: OPP130 is tested model, other models are derivative models. The models are identical in circuit and PCB layout, only different on the model names. So the test data of OPP130 can represent the remaining models.

2. Test Result Summary

EMI Test								
Test Item	Test Requirement	Test Method	Application	Result				
Radiated Emission	ETSI EN301 489-1	EN 55032	Enclosure	PASS				
Conducted Emission	ETSI EN301 489-1	EN 55032	AC port	PASS				
Harmonic Current Emissions	ETSI EN301 489-1	EN 61000-3-2	AC port	N/A				
Voltage Fluctuations and Flicker	ETSI EN301 489-1	EN 61000-3-3	AC port	N/A				
EMS Test								
ESD (Electrostatic Discharge)	ETSI EN301 489-1	EN 61000-4-2	Enclosure	PASS				
Radiated Immunity	ETSI EN301 489-1	EN 61000-4-3	Enclosure	PASS				
EFT (Electrical Fast Transients)	ETSI EN301 489-1	EN 61000-4-4	AC port	N/A				
Surge Immunity	ETSI EN301 489-1	EN 61000-4-5	AC port	N/A				
Injected Currents	ETSI EN301 489-1	EN 61000-4-6	AC port	N/A				
Voltage Dips and Interruptions	ETSI EN301 489-1	EN 61000-4-11	AC port	N/A				

Note:

Page 4 of 33

¹ Pass: Test item meets the requirement.

^{2.} N/A: Test case does not apply to the test object.

^{3.} The test result judgment is decided by the limit of test standard.

3. General Information

3.1. Test environment and mode

Item	Normal condition							
Temperature	+25°C							
Voltage	DC 5V(Adapter input AC 230 V/ 50 Hz)							
Humidity	55%							
Atmospheric Pressure:	1008 mbar							
Test Mode:								
TM1	Wireless Charging(15 W)							

3.2. Description of Support Units

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Equipment	Model No.	Serial No.	FCC ID	Trade Name
Adapter	EP-TA200	R37M4PR3QD1SE3	/	SAMSUNG
Coil Load	1	/ /		1

^{1.} All the equipment/cables were placed in the worst-case configuration to maximize the emission during the test.

^{2.} Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use.

3.3. Test Instruments List

Equipment	Manufacturer	Model No.	Serial No.	Cal. Due	
Disturbance voltage at main	s terminals				
EMI Test Receiver	R&S	ESCI3	100898	2023/07/03	
Line Impedance Stabilisation Newtork(LISN)	Schwarzbeck	NSLK 8126	8126453	2024/02/20	
Attenuator	N/A	10 dB	164080	2023/07/03	
Radiated emission (30 MHz t	o 1 GHz)				
Broadband Antenna	Schwarzbeck	VULB9163	340	2023/07/05	
EMI Test Receiver	R&S	ESIB7	100197	2023/07/03	
Pre-amplifier	HP	8447D	8447D 2727A05017		
Electrostatic discharge imm	unity (ESD)		```		
Electrostatic Discharge Generator	HAEFELY	PESD300 H012056		2023/07/01	
Radiated, radio-frequency, e	lectromagnetic	field immunity	(RS)		
Antenna	SKET	STLP 9129_Plus	1	1	
Signal Generator	Agilent	N5181A	MY50141997	2024/02/20	
Amplifier	SKET	HAP_80M01 G-250W	1	2024/02/23	
Amplifier	SKET	HAP_01G03 G-75W	202104180	2023/07/03	
Amplifier	SKET	HAP_03G06 G-80W	202004044	2023/07/03	
Field Probe	Field Probe Narda		811ZX01057	2023/07/05	
USB Power Sensor	SB Power Sensor Agilent		MY53410013	2024/02/21	
USB Power Sensor	Agilent	U2001A	MZ54330012	2024/02/21	

4. Facilities and Accreditations

4.1. Facilities

The test facility is recognized, certified, or accredited by the following organizations:

• FCC - Registration No.: 645098

SHENZHEN TONGCE TESTING LAB

Designation Number: CN1205

The testing lab has been registered and fully described in a report with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files.

IC - Registration No.: 10668A-1

SHENZHEN TONGCE TESTING LAB

CAB identifier: CN0031

The testing lab has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing.

4.2. Location

Shenzhen TCT Testing Technology Co., Ltd.

Address: 2101 & 2201, Zhenchang Factory, Renshan Industrial Zone, Fuhai Subdistrict,

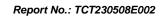
Bao'an District, Shenzhen, Guangdong, China

TEL: +86-755-27673339

4.3. Measurement Uncertainty

The reported uncertainty of measurement $y \pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

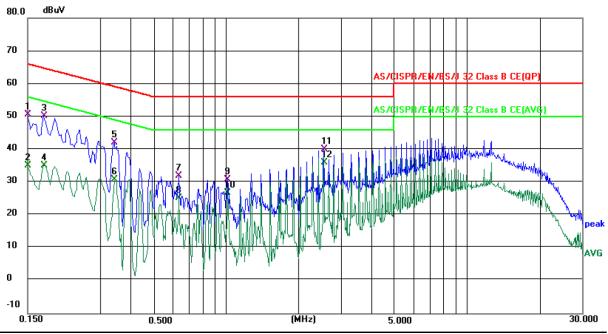
No.	Item	MU
1	Temperature	±0.1℃
2	Humidity	±1.0 %
3	Spurious Emissions, Conducted	\pm 3.10 dB
4	All Emissions, Radiated (30 MHz to 1 GHz)	±4.56 dB
5	All Emissions, Radiated (1 GHz to 6 GHz)	±4.22 dB



5. Emission Test

5.1. Conducted Emission

5.1.1. Test Specification


Test Requirement:	ETSI EN 301 489-1							
Test Method:	EN 55032							
Test Frequency Range:	150kHz to 30MHz							
Class / Severity: Class B	Class B							
Receiver Setup:	RBW=9kHz, VBW=30kHz							
Limit:	Limit (dBuV) Quasi-peak Average							
	Reference		oney.					
Test Setup:	AUX Equipment Test table/Insulation plane Remark: E.U.T. Equipment Under Test LISN: Line Impedence Stabilization Networks table height=0.8m	80cm LISN Filter	— AC power					
Test Procedure	The E.U.T and simulators through a line impedance provide a 50ohm/50uH continued and equipment. The periphera main power through a LIS coupling impedance with the block diagram of the track sides of A.C. line are che interference. In order to fir relative positions of equipmust be changed according measurement.	e stabilization netwo oupling impedance al devices are also SN that provides a 50ohm termination test setup and pho cked for maximum and the maximum of	rork (L.I.S.N.). The e for the measuring o connected to the 50ohm/50uH n. (Please refer to otographs). Both n conducted emission, the e interface cables					
Test Instrument:	Refer to section 3.3 for de	etails						
Test Mode:	Refer to section 3.1 for de	etails	180					
Test Results:	PASS							

5.1.2. Test Data

Conducted Emission on Line Terminal of the power line (150 kHz to 30MHz)

Site 844 Shielding Room

Phase: L1

Temperature: 23.5 (°C)

Humidity: 52 %

Limit: AS/CISPR/EN/BS/J 32 Class B CE(QP)

Power:DC 5 V(Adapter Input AC 230 V/50 Hz)

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBu∀	dB	dBu∀	dBu∀	dB	Detector	Comment
1		0.1500	40.58	10.11	50.69	66.00	-15.31	QP	
2		0.1500	25.11	10.11	35.22	56.00	-20.78	AVG	
3		0.1740	40.01	10.13	50.14	64.77	-14.63	QP	
4		0.1740	25.03	10.13	35.16	54.77	-19.61	AVG	
5		0.3420	32.09	9.95	42.04	59.15	-17.11	QP	
6		0.3420	20.97	9.95	30.92	49.15	-18.23	AVG	
7		0.6380	22.63	9.32	31.95	56.00	-24.05	QP	
8		0.6380	15.90	9.32	25.22	46.00	-20.78	AVG	
9		1.0180	21.92	8.96	30.88	56.00	-25.12	QP	
10		1.0180	17.89	8.96	26.85	46.00	-19.15	AVG	
11		2.5460	30.07	10.02	40.09	56.00	-15.91	QP	
12	*	2.5460	26.05	10.02	36.07	46.00	-9.93	AVG	

Note:

Freq. = Emission frequency in MHz

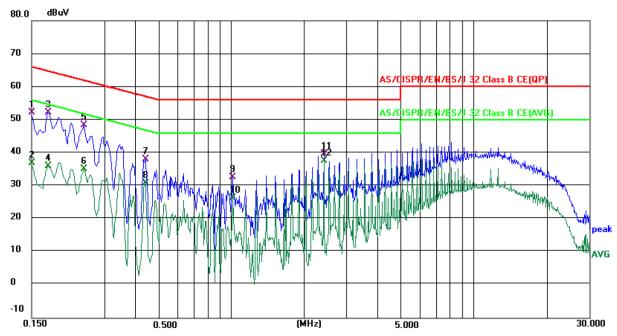
Reading level $(dB\mu V)$ = Receiver reading

Corr. Factor (dB) = LISN factor + Cable loss

Measurement $(dB\mu V)$ = Reading level $(dB\mu V)$ + Corr. Factor (dB)

 $Limit (dB\mu V) = Limit stated in standard$

 $Margin (dB) = Measurement (dB\mu V) - Limits (dB\mu V)$


Q.P. =Quasi-Peak

AVG =average

^{*} is meaning the worst frequency has been tested in the frequency range 150 kHz to 30MHz.

Conducted Emission on Neutral Terminal of the power line (150 kHz to 30MHz)

Site 844 Shielding Room

Phase: N

Temperature: 23.5 (°C)

Humidity: 52 %

Limit: AS/CISPR/EN/BS/J 32 Class B CE(QP)

Power: DC 5 V(Adapter Input AC 230 V/50 Hz)

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBu∀	dB	dBu∀	dBu∀	dB	Detector	Comment
1		0.1500	42.21	10.09	52.30	66.00	-13.70	QP	
2		0.1500	26.81	10.09	36.90	56.00	-19.10	AVG	
3		0.1739	42.11	10.11	52.22	64.77	-12.55	QP	
4		0.1739	25.81	10.11	35.92	54.77	-18.85	AVG	
5		0.2459	38.37	9.95	48.32	61.89	-13.57	QP	
6		0.2459	25.06	9.95	35.01	51.89	-16.88	AVG	
7		0.4420	28.51	9.51	38.02	57.02	-19.00	QP	
8		0.4420	21.29	9.51	30.80	47.02	-16.22	AVG	
9		1.0180	23.61	8.97	32.58	56.00	-23.42	QP	
10		1.0180	17.44	8.97	26.41	46.00	-19.59	AVG	
11		2.4140	29.52	10.04	39.56	56.00	-16.44	QP	
12	*	2.4140	27.49	10.04	37.53	46.00	-8.47	AVG	

Note:

Freq. = Emission frequency in MHz

Reading level $(dB\mu V)$ = Receiver reading

Corr. Factor (dB) = LISN factor + Cable loss

Measurement ($dB\mu V$) = Reading level ($dB\mu V$) + Corr. Factor (dB)

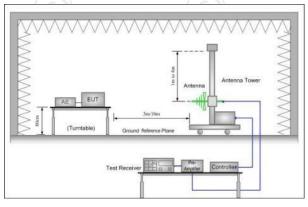
Limit (dBµV) = Limit stated in standard

 $Margin (dB) = Measurement (dB\mu V) - Limits (dB\mu V)$

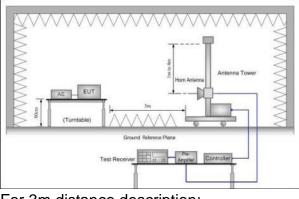
Q.P. =Quasi-Peak

AVG =average

^{*} is meaning the worst frequency has been tested in the frequency range 150 kHz to 30MHz.


5.2. **Radiated Emission**

5.2.1. Test Specification


Test Requirement:	ETSI EN 301 489-1							
Test Method:	EN 55032	EN 55032						
Test Frequency Range:	30MHz to 6GHz				(c ¹)			
Test Site:	Measurement	t Distance	: 3n	n				
Receiver Setup:	Frequency Dete		or RBW		VBW	Remark		
receiver cotup.	30MHz-1GHz Quasi-peal		ak	120KHz	300KHz	Quasi-peak Value		
	Above 1CHz	Peak		1MHz	3MHz	Peak Value		
	Above 1GHz	Average	;	1MHz	10Hz	Average Value		
Limit:	Frequer	ncy	Lin	nit (dBuV/r	n @3m)	Remark		
	30MHz-230MHz		40.0			Quasi-peak Value		
	230MHz-1GHz		47.0			Quasi-peak Value		
	1GHz-60	2U-7	54.0			Average Value		
	IGHZ-60	JUZ		74.0		Peak Value		
		_	•					

Test Setup:

Below 1GHz

Above 1GHz

For 3m distance description:

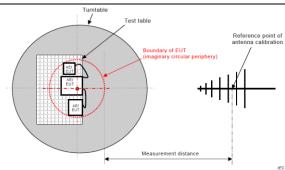


Figure C.1 – Measurement distance

Test Procedure:

From 30MHz to 1GHz:

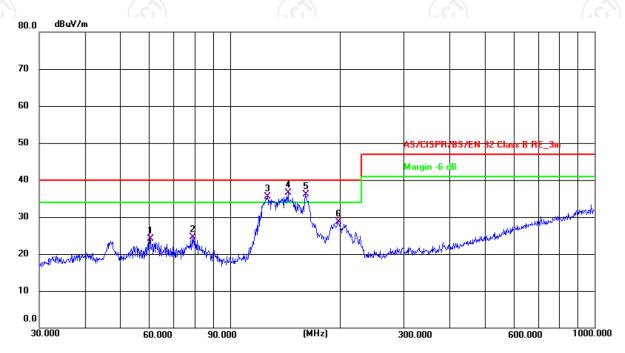
- 1. The radiated emissions test was conducted in a semi-anechoic chamber.
- The tabletop EUT was placed upon a non-metallic table 0.8m above the ground reference plane. And for floor-standing arrangement, the EUT was placed on the horizontal ground reference plane, but separated from metallic contact with the ground reference plane by 0.1m of insulation.
- 3. Before final measurements of radiated emissions, a pre-scan was performed in the spectrum mode with the peak detector to find out the maximum emissions spectrum plots of the EUT.
- 4. The frequencies of maximum emission were determined in the final radiated emissions measurement. At each frequency, the EUT was rotated 360°, and the antenna was raised and lowered from 1 to 4 meters in order to determine the maximum disturbance. Measurements were performed for both horizontal and vertical antenna polarization.

Above 1GHz:

- The radiated emissions test was conducted in a fully-anechoic chamber.
- The tabletop EUT was placed upon a non-metallic table 0.8m above the ground reference plane. And for floor-standing arrangement, the EUT was placed on the horizontal ground reference plane, but separated from metallic contact with the ground reference plane by 0.1m of insulation.
- 3. Before final measurements of radiated emissions, a pre-scan was performed in the spectrum mode with the peak detector to find out the maximum emission spectrum plots of the EUT.
- 4. The frequencies of maximum emission were determined in the final radiated emissions measurement. At each frequency, the EUT was rotated 360°, and the antenna was raised and lowered from 1 to 4 meters in order to determine the maximum disturbance. Measurements were performed for both horizontal and vertical antenna polarization.

Test Instrument: Refer to section 3.3 for details

Test Mode: Refer to section 3.1 for details


Test Results: PASS

5.2.2. Test Data

Radiated Emission In Horizontal (30MHz----1000MHz)

Site #2 3m Anechoic Chamber

Polarization: Horizontal

Temperature: 25.8(C) Humidity: 53 %

Limit: AS/CISPR/BS/EN 32 Class B RE_3m

Power: AC 230 V/50 Hz

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark
1	60.2801	10.89	13.25	24.14	40.00	-15.86	QP	Р	
2	78.6887	14.21	10.27	24.48	40.00	-15.52	QP	Р	
3 !	126.7723	21.80	13.62	35.42	40.00	-4.58	QP	Р	
4 *	144.3347	21.87	14.59	36.46	40.00	-3.54	QP	Р	
5 !	160.9089	21.20	14.93	36.13	40.00	-3.87	QP	Р	
6	197.8928	17.78	10.85	28.63	40.00	-11.37	QP	Р	

Note:

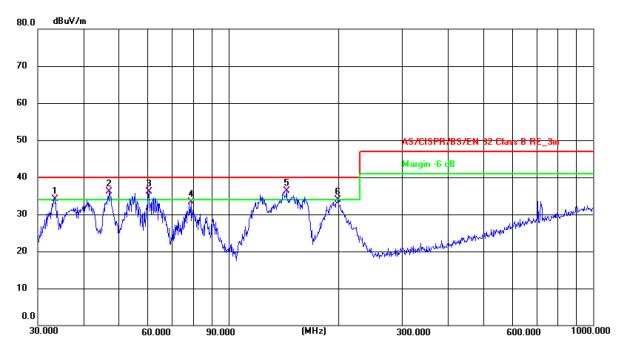
Freq. = Emission frequency in MHz

Reading level $(dB\mu V)$ = Receiver reading

Corr. Factor (dB) = Antenna factor + Cable loss

Measurement ($dB\mu V$) = Reading level ($dB\mu V$) + Corr. Factor (dB)

Limit (dBµV) = Limit stated in standard


 $Margin (dB) = Measurement (dB\mu V) - Limits (dB\mu V)$

* is meaning the worst frequency has been tested in the test frequency range

Page 14 of 33

Radiated Emission In Vertical (30MHz----1000MHz)

Temperature: 25.8(C) Humidity: 53 % Site #2 3m Anechoic Chamber Polarization: Vertical

Limit: /	Limit: AS/CISPR/BS/EN 32 Class B RE_3m				Power: AC 230 V/50 Hz				
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark
1!	33.4448	20.68	13.38	34.06	40.00	-5.94	QP	Р	
2 !	47.1597	22.34	13.74	36.08	40.00	-3.92	QP	Р	
3 !	60.4917	23.02	13.18	36.20	40.00	-3.80	QP	Р	
4	78.9651	23.11	10.23	33.34	40.00	-6.66	QP	Р	
5 *	144.3346	21.71	14.59	36.30	40.00	-3.70	QP	Р	
6	199.9855	23.03	10.95	33.98	40.00	-6.02	QP	Р	

Note:

Freq. = Emission frequency in MHz

Reading level $(dB\mu V)$ = Receiver reading

Corr. Factor (dB) = Antenna factor + Cable loss

Measurement $(dB\mu V)$ = Reading level $(dB\mu V)$ + Corr. Factor (dB)

Limit (dBµV) = Limit stated in standard

 $Margin (dB) = Measurement (dB\mu V) - Limits (dB\mu V)$

* is meaning the worst frequency has been tested in the test frequency range

5.3. Harmonic Current Emissions

5.3.1. Test Specification

Test Result:	EUT is supplied by DC, Not applicable	ľζ

5.4. Flicker and Voltage Fluctuation

5.4.1. Test Specification

or Opcom	ication						
sult:	EU	T is supplie	ed by DC, I	Not applica	ıble		
	sult:		EUT is supplied	EUT is supplied by DC, I	EUT is supplied by DC, Not application of the control of the contr	EUT is supplied by DC, Not applicable EUT is supplied by DC, Not applicable CO CO CO CO CO CO CO CO CO	Sult: EUT is supplied by DC, Not applicable

Page 16 of 33

Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

6. Immunity Test

6.1. Performance Criteria

Performance Criteria of ETSI EN 301 489-1, sub clause 6

Criteria	Performance Criteria
CT/CR	During and after the test, the apparatus shall continue to operate as intended. No degradation of performance or loss of function is allowed below a permissible performance level specified by the manufacturer when the apparatus is used as intended. In some cases this permissible performance level may be replaced by a permissible loss of performance.
TT/TR	After the test, the apparatus shall continue to operate as intended. No degradation of performance or loss of function is allowed below a permissible performance level specified by the manufacturer, when the apparatus is used as intended. In some cases this permissible performance level may be replaced by a permissible loss of performance.

Performance Criteria of ETSI EN 301 489-3, sub clause 6

Periormance Crite	ria of ETSI EN 301 489-3, sub clause 6
Criteria	Performance Criteria
CT/CR	For equipment with primary function type I or II including ancillary equipment tested on a stand alone basis, the performance criteria A of the applicable device type as given in clause 6.3 shall apply. For equipment with primary function type II or III that requires a communication link that is maintained during the test, it shall be verified by appropriate means supplied by the manufacturer that the communication link is maintained during each individual exposure in the test sequence. Where the EUT is a transmitter, tests shall be repeated with the EUT in standby mode to ensure that any unintentional transmission does not occur. Where the EUT is a transceiver, under no circumstances shall the transmitter operate unintentionally during the test.
TT/TR	For equipment with primary function type I or II, including ancillary equipment tested on a stand alone basis, the performance criteria B of the applicable device type as given in clause 6.3 shall apply, except for power interruptions exceeding a certain time the performance criteria deviations are specified in clause 7.2.2. For equipment with primary function type II or III that requires a communication link that is maintained during the test, this shall be verified by appropriate means supplied by the manufacturer during each individual exposure in the test sequence. Where the EUT is a transmitter, tests shall be repeated with the EUT in standby mode to ensure that any unintentional transmission does not occur. Where the EUT is a transceiver, under no circumstances shall the transmitter operate unintentionally during the test.

6.2. Surges

6.2.1. Test Specification

Test result: EUT is supplied by DC, Not applicable

6.3. Electrical Fast Transient (EFT)

6.3.1. Test Specification

Test result:	EUT is supplied by DC, Not applicable
--------------	---------------------------------------

6.4. Radio-frequency Continuous Conducted (CS)

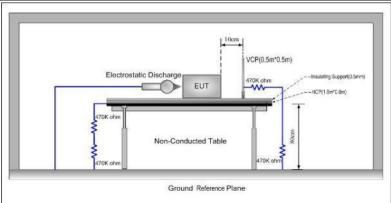
6.4.1. Test Specification

Test result:	EUT is supplied by DC, Not applicable	
restresuit.	LOT is supplied by DC, Not applicable	

6.5. Voltage Dips and Voltage Interruption

6.5.1. Test Specification

Test result:	EUT is supplied by DC, Not applicable
--------------	---------------------------------------


6.6. Electrostatic Discharge

6.6.1. Test Specification

Test Requirement:	EN 301489-1	Ć
Test Method:	EN 61000-4-2	
Discharge Voltage:	Contract Discharge: ±2kV, ±4kV Air Discharge: ±2kV, ±4kV, ±8kV HCP/VCP: ±2kV, ±4kV	
Polarity:	Positive & Negative	
Number of Discharge:	Contact Discharge: Minimum 25 times at each test point, Air Discharge: Minimum 10 times at each test point.	C
Discharge Mode:	Single Discharge	
Discharge Period:	1 second minimum	

Test Setup:

Test Procedure:

1) Air discharge:

The test was applied on non-conductive surfaces of EUT. The round discharge tip of the discharge electrode was approached as fast as possible to touch the EUT. After each discharge, the discharge electrode was removed from the EUT. The generator was re-triggered for a new single discharge and repeated 10 times for each pre-selected test point. This procedure was repeated until all the air discharge completed

2) Contact Discharge:

The test was applied on conductive surfaces of EUT. the generator was re-triggered for a new single discharge and repeated 10 times for each pre-selected test point. the tip of the discharge electrode was touch the EUT before the discharge switch was operated.

3) Indirect discharge for horizontal coupling plane

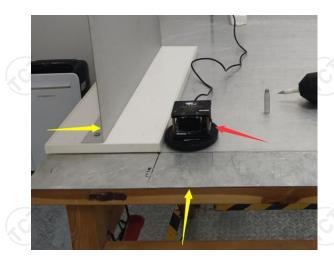
At least 10 single discharges shall be applied at the front edge of each HCP opposite the centre point of each unit of the EUT and 0.1m from the front of the EUT. The long axis of the discharge electrode shall be in the plane of the HCP and perpendicular to its front edge during the discharge. Consideration should be given to exposing all sides of the EUT.

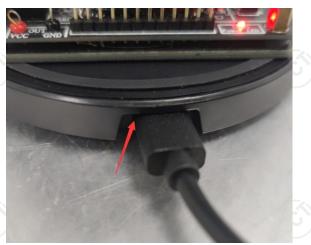
4) Indirect discharge for vertical coupling plane

At least 10 single discharges were applied to the centre of one vertical edge of the coupling plane. The coupling plane, of dimensions 0.5m X 0.5m, was placed parallel to, and positioned at a distance of 0.1m from the EUT. Discharges were applied to the coupling plane, with this plane in sufficient different positions that the four faces of the EUT are completely illuminated.

Test Instrument:	Refer to Section 3.3 for Details		
Test Mode:	Refer to Section 3.1 for Details	(6)	(c)
Test Results:	PASS		

6.6.2. Test data


Test points:	I: Please refer to red arrows as below plots								
	II: Please refer to yellow arrows as below plots								
Air Discharge									
Discharge Voltage (KV)	Type of discharge	Test points	Test points Observation Criterion						
± 2, ± 4	Contact	II ((C))	N/A	N/A					
± 2, ± 4,± 8	Air	I	А	PASS					
Indirect Discharge									
Discharge Voltage (KV)	Type of discharge	Test points	Observation Criterion	Result					
± 2, ± 4	HCP-Bottom/To p/ Front/Back/Left/ Right	Edge of the HCP	Α	PASS					
± 2, ± 4	VCP-Front/Back /Left/Right	Centre of the VCP	A	PASS					



Test point as follows:

6.7. Radio-frequency Electromagnetic Field Amplitude Modulated (RS)

6.7.1. Test Specification

Test Requirement:	ETSI EN 301 489-1				
Test Method:	EN 61000-4-3				
Frequency Range:	80MHz to 6.0GHz				
Test Level:	3V/m				
Modulation:	80%, 1kHz Amplitude Modulation				
Test Setup:	Camera Antenna Tower Ground Reference Plane Generator Monitor Power Amplifier				
Test Procedure:					

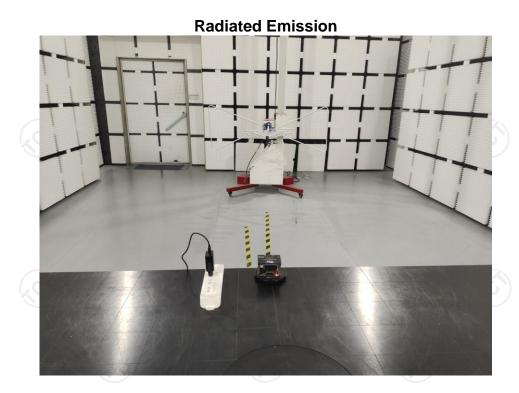
6.	The test normally was performed with the generating
	antenna facing each side of the EUT.
7.	The polarization of the field generated by each anten

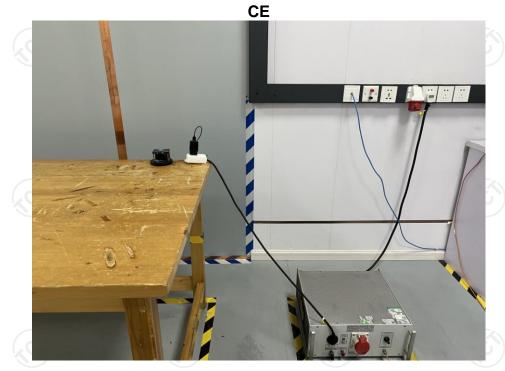
7. The polarization of the field generated by each antenna necessitates testing each selected side twice, once with the antenna positioned vertically and again with the antenna positioned horizontally.

The EUT was performed in a configuration to actual installation conditions, a video camera and/or audio monitor were used to monitor the performance of the EUT.

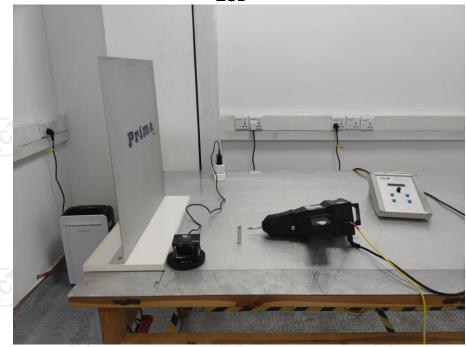
Test Instrument: Refer to Section 3.3 for Details

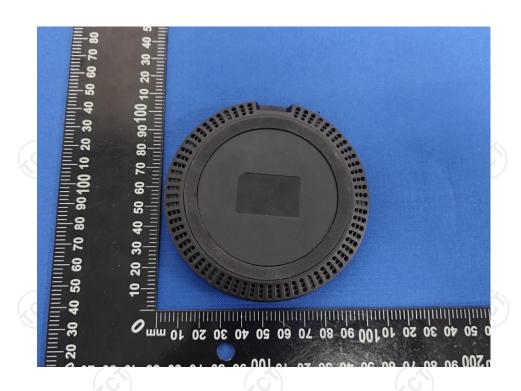
Test Mode: Refer to Section 3.1 for Details

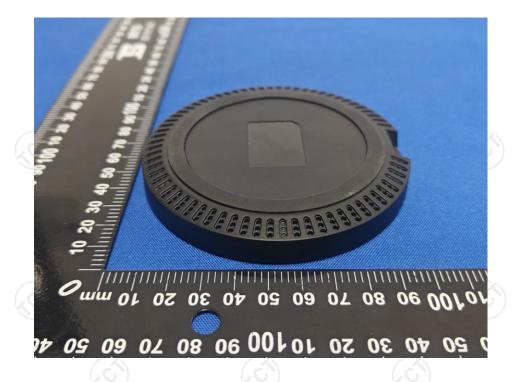

Test Result: PASS

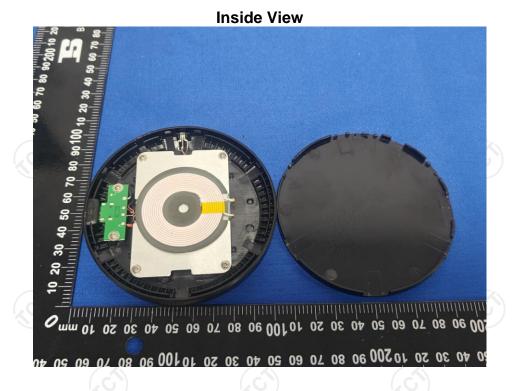

6.7.2. Test data

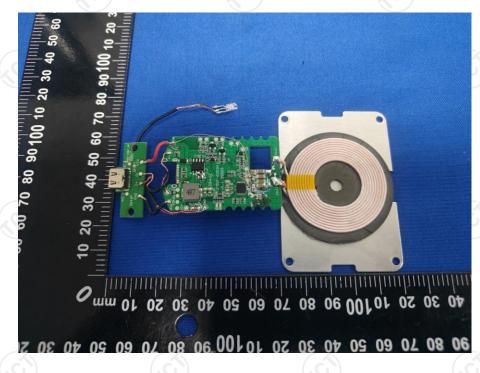
Frequency	Level	Modulation	Antenna Polarization	EUT Face	Observation Criterion
80MHz-6.0GHz		1 kHz, 80 % Amp. Mod, 1 % increment, dwell time=3 seconds	V	Front	A (C)
	GHz 3 V/m		V H	Rear	
			V	Left Right	
			V H		
			H		
			V	Top	
			Н		
			V V		Ćζ
			Н		

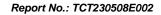

7. Photographs of Test Configuration


8. Photographs of EUT

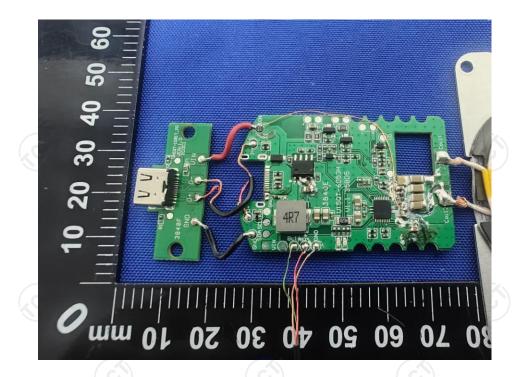


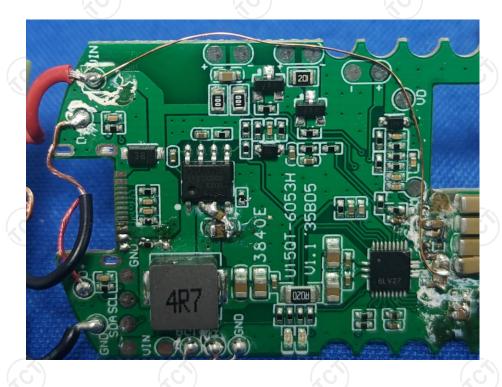


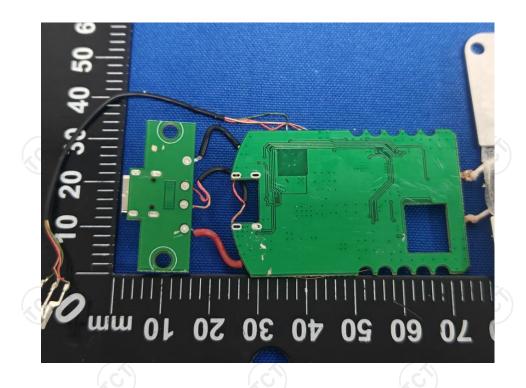


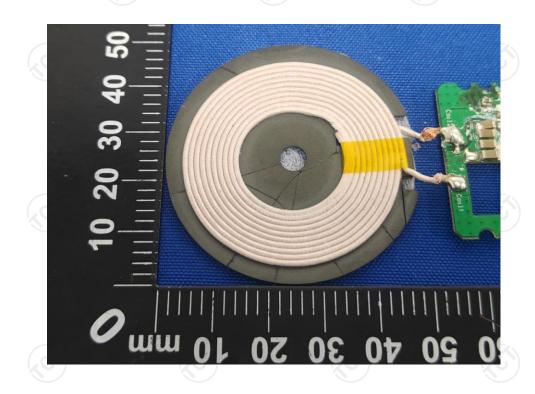


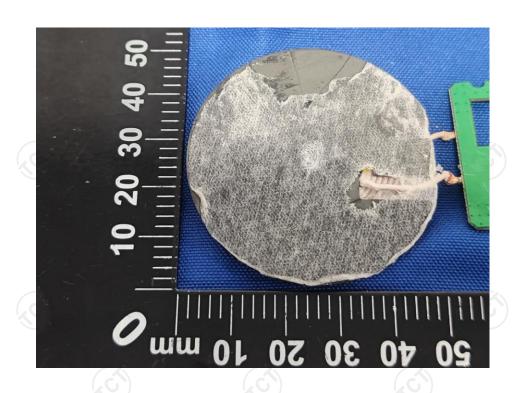
TCT通测检测
TESTING CENTRE TECHNOLOGY











*****END OF REPORT****

